Chapter 4 Practice Test

No Calculator Section:

1. Solve the system using substitution:
$$x - 2y = -1$$

 $3x - 4y = 3$

2. Solve the system using elimination.
$$3x + 4y = 2$$

 $5x - 3y = 13$

a.
$$\begin{bmatrix} 11 & 4 & -8 \\ 2 & -3 & 6 \end{bmatrix} + \begin{bmatrix} -1 & 5 & 12 \\ 20 & 18 & 4 \end{bmatrix}$$

b.
$$\begin{bmatrix} 48 & 15 \\ -6 & 24 \end{bmatrix} - \begin{bmatrix} 12 & -3 \\ -7 & 8 \end{bmatrix}$$

c.
$$\begin{bmatrix} 10 & -19 & 4 \end{bmatrix} + \begin{bmatrix} 23 & -3 & 16 \\ 54 & 13 & 5 \end{bmatrix}$$

4. Multiply.

a.
$$4[7 -5 9]$$

b.
$$-3\begin{bmatrix} 21 & 8 \\ -4 & 25 \end{bmatrix}$$

c.
$$\frac{3}{4}[12 \ 28]$$

5. Find the determinant of each matrix.

a.
$$\begin{vmatrix} 15 & 6 \\ 2 & 3 \end{vmatrix}$$

b.
$$\begin{vmatrix} -7 & -4 \\ 3 & 6 \end{vmatrix}$$

6. Find the value.
$$f(x) = 2x + 7$$

$$g(x) = x^2 - 1$$

c.
$$f(x+3)$$

e.
$$f(g(x))$$

$$f.$$
 $g(f(x))$

g.
$$f(f(3))$$

7. Graph the system. Shade ONLY the INTERSECTION.

$$y \le -\frac{1}{2}x + 4$$

 $2x - 3y \ge 6$
 $y < 3$
 $x < 9$

- 8. You are going into to business selling cakes. You buy a used food truck for \$4000. It costs you \$6 to make each cake. You sell the cakes for \$38.
 - a. Write an equation C(x) that represents your business costs.
 - b. How much does it cost to make 100 cakes? 200 cakes?
 - c. Write an equation R(x) that represents your revenue from selling cakes.
 - d. How much do you make when you sell 100 cakes? 200 cakes?
 - e. Set the equations equal to each other and find the break-even point.

Calculator Section:

Solve the systems.

9.
$$8x + 7y = -18$$

 $6x + 11y = -2$

10.
$$-3x + 2y + 8z = 29$$

 $4x + 7y - 2z = -5$
 $6x - 3y + 4z = 41$

11. Calculate the determinant.
$$\begin{vmatrix} 5 & -7 & 2 \\ 4 & 3 & 11 \\ 2 & -1 & 6 \end{vmatrix}$$

12. Determine whether the systems are independent, dependent, or inconsistent.

a.
$$12x + 8y = 28$$

 $15x + 10y = 35$

b.
$$15x + 10y = 35$$

 $18x + 12y = 36$

- 13. Two goats climbing up a mountain. The black goat starts at an elevation of 64 feet and he climbs 4 feet up every minute. The white goat starts at an elevation of 11 feet and he climbs 6 feet up every minute.
 - a. Write an equation that represents the black goat's altitude.
 - b. What is the black goat's elevation at 15 minutes?
 - c. Write an equation that represents the white goat's altitude.
 - d. What is the white goat's elevation at 15 minutes?
 - e. Calculate the time when the two goats will be at the same elevation.

