Derivative Rules

	Function	Derivative	Example	
Constant Function	y = constant	dy/dx = 0	y = 7	y' = 0
x	y = x	dy/dx = 1	y = x	y'= 1
Power of x Rule	$y = x^n$	$dy/dx = n(x^{n-1})$	$y = x^6$	$y'=6x^5$
Multiple Rule	$y = k \cdot f(x)$	$dy/dx = k \cdot f'(x)$	$y = 3x^4$	$y'=12x^3$
Addition and Subtraction Rule	y = f(x) + g(x)	dy/dx = f'(x) + g'(x)	$y = 3x^2 + 4x$	y'=6x+4
e ^x	$y = e^x$	$dy/dx = e^x$	$y = e^x$	$y' = e^x$
Number raised to a power of x	$y = b^x$	$dy/dx = b^x \ln b$	$y = 3^x$	$y' = 3^x \ln 3$
Natural log of x	$y = \ln x$	dy/dx = 1/x	$y = \ln x$	y' = 1
Log of x	$y = log_b x$	$dy/dx = \frac{1}{x (\ln b)}$	$y = log_4 x$	$y' = \frac{1}{x (\ln 4)}$

Product Rule: y' = (Front)(Back') + (Back)(Front')

$$y = (x^2 + 4)(3x - 5)$$
 $y' = (x^2 + 4)(3) + (3x - 5)(2x)$

Quotient Rule: y' = (Bottom)(Top') - (Top)(Bottom') $(Bottom)^2$

$$y = \underbrace{(3x-1)}_{(x^2+4)} \qquad \qquad y' = \underbrace{(x^2+4)(3) - (3x-1)(2x)}_{(x^2+4)^2}$$

Chain Rule: y' = (Outside')(Inside')

$$y = (3x^2 + 5x)^4$$
 $y' = 4(3x^2 + 5x)^3(6x + 5)$