Polar Coordinates

Every polar coordinate can be represented 4 ways

(r , counter-clockwise angle)
(r, clockwise angle)
(-r , counter-clockwise angle)
(-r , clockwise angle)

Change from polar to rectangular coordinates

$x=r \cos \theta$
$y=r \sin \theta$

Change from rectangular to polar coordinates

$r= \pm \sqrt{x^{2}+y^{2}}$
$\theta=\tan ^{-1} \mathrm{y} / \mathrm{x}$

Change a rectangular equation to polar

1. Substitute $r \cos \theta$ for every $x, r \sin \theta$ for every y, and r^{2} for every $x^{2}+y^{2}$.
2. Rewrite the equation so that r is by itself.

Change a polar equation to rectangular

1. Cross-multiply to get rid of any fractional equations.
2. Substitute $x^{2}+y^{2}$ for every r^{2}. Substitute x for every $r \cos \theta$ and y for every $r \sin \theta$.
3. If you only have r, get it by itself. You will have to change it to r^{2}. There are 2 ways to do this. Choose the method that gives the best results.
a. Multiply both sides of the equation by r , or
b. Square both sides of the equation

Section Exercises 12.1: Polar Coordinates

In Exercises 1-4, plot each point on a polar graph and find three additional polar coordinate representations of this point such that $-360^{\circ}<\theta<360^{\circ}$.

1. $\left(2,30^{\circ}\right)$
2. $\left(3,135^{\circ}\right)$
3. $\left(-5,90^{\circ}\right)$
4. $\left(4,-60^{\circ}\right)$

In Exercises 5-8, the polar coordinates are given. Find the rectangular coordinates for the same point. Round answers to the nearest tenth.
5. $\left(4,90^{\circ}\right)$
6. $\left(-1,225^{\circ}\right)$
7. $\left(4,60^{\circ}\right)$
8. $\left(\sqrt{2},-135^{\circ}\right)$

In Exercises $9-12$, the rectangular coordinates of a point are given. In each case find two sets of polar coordinates for the same point such that $0 \leq \theta<360$. Round answers to the nearest tenth.
9. $(1,1)$
10. $(0,-5)$
11. $(-3,4)$
12. $(5,12)$

In Exercises 11-13, find a polar equation of the graph having the given rectangular equation.
13. $x^{2}+y^{2}=9$
14. $x^{2}+y^{2}-6 y=0$
15. $4 \mathrm{x}+7 \mathrm{y}-2=0$

In Exercises $14-16$, find a rectangular equation of the graph having the polar equation.
16. $r=4 \cos \theta$
17. $\mathrm{r}=\frac{1}{1-\cos \theta}$
18. $\mathrm{r}=\frac{6}{2 \cos \theta-2 \sin \theta}$

