

Quadratic Functions

$$y = ax^2 + bx + c$$
 standard form
 $y = a(x - h)^2 + k$ vertex form
 $y = a(x - r_1)(x - r_2)$ root form

The leading coefficient **a** tells you whether the curve opens up or down.

The constant \mathbf{c} tells you where the curve crosses the y – axis.

Does the function open up or down? Where does it cross the y-axis?

1.
$$y = x^2 + 8x - 3$$

2.
$$y = 2x^2 - 6x + 5$$

3.
$$y = -3x^2 - 30x + 11$$

4.
$$y = -4x^2 + 16x - 5$$

How many **solutions** does each equation have?

Set the equation equal to 0. Graph it to see where the x-intercepts are or solve by factoring.

1.
$$x^2 + 2x + 8 = 0$$

2.
$$3x^2 - 3x = 4$$

3.
$$x^2 = 5x + 5$$

4.
$$2y^2 - 4y = -2$$

5.
$$20x = x^2 + 100$$

6.
$$-x^2 + 7x - 15 = 0$$

The maximum or minimum is at the vertex. (h, k) is the vertex of the parabola.

Find the vertex for each function. Is it a minimum or a maximum?

1.
$$y = (x - 5)^2 + 3$$

2.
$$y = \frac{1}{2}(x+1)^2 + 4$$

3.
$$y = -2(x-1)^2 - 2$$

4.
$$y = -(x-3)^2 - 1$$

The **roots** or zeros are the x-intercepts. The **vertex** is located halfway between the roots Find the roots by factoring. What is the x-coordinate of the vertex?

1.
$$y = x^2 + 10x + 24$$

2.
$$y = x^2 - 3x - 10$$

3.
$$y = x^2 - 4x$$

4.
$$y = x^2 - 16$$